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Abstract 
Orf virus (ORFV), the prototype species of the Parapoxvirus genus, is an important zoonotic virus, causing great economic 
losses in livestock production. At present, there are no effective drugs for orf treatment. Therefore, it is crucial to develop 
accurate and rapid diagnostic approaches for ORFV. Over decades, various diagnostic methods have been established, includ-
ing conventional methods such as virus isolation and electron microscopy; serological methods such as virus neutralization 
test (VNT), immunohistochemistry (IHC) assay, immunofluorescence assay (IFA), and enzyme-linked immunosorbent 
assay (ELISA); and molecular methods such as polymerase chain reaction (PCR), real-time PCR, loop-mediated isothermal 
amplification (LAMP), recombinase polymerase amplification (RPA), and recombinase-aided amplification (RAA) assay. 
This review provides an overview of currently available diagnostic approaches for ORFV and discusses their advantages 
and limitations and future perspectives, which would be significantly helpful for ORFV early diagnosis and surveillance to 
prevent outbreak of orf.

Key points
• Orf virus emerged and reemerged in past years
• Rapid and efficient diagnostic approaches are needed and critical for ORFV detection
• Novel and sensitive diagnostic methods are required for ORFV detection

Keywords Orf virus · Diagnostic approach · Conventional methods · Serological methods · Molecular methods

Introduction

Orf virus (ORFV) is a linear double-stranded DNA virus, 
belonging to the Parapoxvirus genus within the Pox-
viridae family (Yao et al. 2020). The genome of ORFV 
ranges from approximately 132 kb to 140 kb, encoding 
132 genes. The relatively conserved central regions are 
essential for viral replication and morphogenesis while the 
terminal areas are crucial for virus virulence, pathogen-
esis, and immune evasion (Yu et al. 2020). ORFV is the 
pathogen of orf, which is a highly contagious, epithelio-
tropic, zoonotic disease. The disease mainly infects goats 
and sheep (Galante et al. 2019) and sometimes infects deer 
(Tryland et al. 2018), camels (Azwai et al. 1995), musk 

ox (Vikoren et al. 2008), and cats (Fairley et al. 2008; 
Frandsen et al. 2011). Clinical symptoms of orf include 
papules, vesicles, and growing scabs on the lips and muz-
zle of infected animals (Sahu et al. 2020). Although both 
cell-mediated and humoral immune responses have been 
demonstrated in infected hosts, cell-mediated immune 
response plays major role against ORFV.  CD4+ T cells, 
not  CD8+ cytotoxic T cells, are the predominant T cells in 
the infected skin in both primary and reinfection, playing 
crucial roles in eliminating the virus (Fleming et al. 2015). 
However, the humoral immune response does not play an 
important role in protecting animals from ORFV infection. 
The absence of ORFV-specific neutralizing antibodies in 
previously infected animals may be the main reason why 
hosts can be repeatedly infected (Koptopoulos et al. 1982). 
Furthermore, the ability of ORFV to repeatedly infect pre-
viously infected animals is largely attributed to multiple 
immunomodulatory proteins encoded by the virus that 
escape from host immune response (Bukar et al. 2021).

It has been reported that several orf outbreaks occurred 
in many countries in recent years (Bala et al. 2019; Da et al. 
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2019; Peralta et al. 2018; Venkatesan et al. 2018; Zhong 
et al. 2019). Although ORFV infection leads to low mortal-
ity, it can result in great economic losses since lambs may 
not thrive due to appetite loss (Jamilu et al. 2018). There-
fore, the rapid and effective diagnosis of ORFV is crucial 
and highly needed for disease control. At present, various 
diagnostic methods have been established for ORFV detec-
tion (Hosamani et al. 2009). Conventional diagnostic meth-
ods include clinical diagnosis, viral isolation, and electron 
microscopy. Serological diagnostic methods include virus 
neutralization test, immunohistochemistry assay, immu-
nofluorescence assay, and enzyme-linked immunosorbent 
assay. Molecular-based diagnosis includes PCR, real-time 
PCR, loop-mediated isothermal amplification, recombinase 
polymerase amplification, and recombinase-aided amplifica-
tion assay. So far, there are few published reviews focused 
on diagnostic methods for ORFV. Given this, this review is 
intended to systematically describe and discuss the features, 
advantages, and limitations of various available diagnostic 
approaches for ORFV (Table 1). I believe that ORFV could 
be rapidly and accurately diagnosed by clinical laboratories 
with the help of these data.

Conventional diagnosis

Clinical diagnosis

Clinically, ORFV infection mainly causes proliferative 
lesions on the skin of lips, oral mucosa, gums, tongues, 
and nostrils. As the disease progresses, erythema, vesicles, 
pustules, and scabs develop (Bukar et al. 2021; Wang et al. 
2019a, b, c). It is difficult to differentiate ORFV from foot 
and mouth disease, bluetongue disease, peste des petits 
ruminants, and goat pox or sheep pox which cause similar 
clinical signs (Chu et al. 2011; Gelaye et al. 2016). Labo-
ratory diagnosis especially molecular methods is always 
required for final identification.

Viral isolation

Viral isolation from clinical specimens is one of the most 
conventional ways for ORFV diagnosis. Various primary 
cells including primary bovine testis (BT) cells (Mercer 
et al. 2006), lamb testis (LT) cells (AlDaif et al. 2021; Kumar 
et al. 2014), ovine fetal turbinate (OFTU) cells (Khatiwada 
et al. 2021; Zhou et al. 2021a, b), goat skin fibroblast (GSF) 
cells (Pang et al. 2019, 2020), fetal lamb muscle (FLM) 
cells, and lamb kidney cells (McInnes et al. 2001) can be 
used for ORFV isolation. Among these, LT, OFTU, and GSF 
cells are currently the most widely used primary cells for 
ORFV isolation. However, there are some challenges such 
as requirement of large numbers of live animals and limited 

cell passages in using primary cells to isolate ORFV. To 
overcome these problems, researchers successfully develop 
two types of immortalized cell lines by transducing the large 
T gene of simian virus 40 to primary goat fibroblast cells 
and testis cells (Yamada et al. 2019). Furthermore, cell lines 
such as Madin-Darby bovine kidney (MDBK) cells (Wang 
et al. 2019a, b, c; Yamada et al. 2019) and Hela cells (Diel 
et al. 2010; Zhou et al. 2021a, b) are commonly employed 
for ORFV culture. Homogenates from scab materials are 
inoculated into permissive primary cell cultures or cell lines. 
Generally, obvious cytopathic effect (CPE) characterized 
by cell ballooning, rounding, degeneration, and detachment 
from the surface will appear after the third to fifth blind pas-
sages (Hosamani et al. 2009). Subsequently, plaque assays 
are conducted to get a monoclonal plaque caused by a single 
virus. Finally, the isolated virus is amplified, titrated, and 
stored at − 80 °C (Martins et al. 2021).

Compared with other methods, viral isolation is labor-
intensive, time-consuming, and less sensitive and may 
require additional biosafety precautions, whereas it is still 
the gold standard for ORFV diagnosis.

Electron microscopy

Electron microscopy (EM) is one of the most direct and 
effective diagnoses for poxvirus infection in animals and 
humans (Kieser et  al. 2020). Parapoxviruses including 
BPSV, PCPV, PVNZ, and ORFV can be differentiated from 
other poxvirus genera due to their ovoid shape and relatively 
small size (220–300 × 140–170 nm, around 260 nm × 160 nm 
for ORFV). Their most characteristic feature is a unique spi-
ral crisscross-patterned tubule-like structure on the particle 
surface (Spyrou and Valiakos 2015). However, due to the 
similar size between ORFV and PCPV, it is hard to differ-
entiate ORFV from PCPV. Despite its low sensitivity, EM 
remains an important tool for diagnosing ORFV infection.

Serological diagnosis

Serological methods including virus neutralization test, 
immunohistochemistry assay, immunofluorescence assay, 
and enzyme linked immunosorbent assay are widely used 
for various virus diagnoses (Haegeman et al. 2020; Rai et al. 
2021). Due to their simplicity, low cost, and limited need 
for specialized devices or facilities, serological methods are 
frequently used for ORFV diagnosis.

Virus neutralization test

Virus neutralization test (VNT) is a technique for measuring 
virus-specific antibodies after natural infection or vaccina-
tion. In this approach, virus-specific antibodies neutralize 
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viruses, which prevents cells from being infected by viruses 
(Kresic et al. 2020). However, serum neutralization test 
is not typically used for ORFV diagnosis since immune 
responses to ORFV infection are mostly cell-mediated and 
neutralizing antibodies are typically low in concentration. 
In general, titers ≥ 8 are considered to be positive in serum 
neutralization tests (Hosamani et al. 2009).

Immunohistochemistry assay

Immunohistochemistry (IHC) assay is an integral tech-
nique to utilize monoclonal and polyclonal antibodies for 
the detection of specific antigens in tissue sections. It has 
been widely used for clinical diagnosis of various diseases 
(Sukswai and Khoury 2019). Histopathological examination 
of orf virus infected skin reveals vascularization and the 
swelling of the keratinocytes in the stratum spinosum, reticu-
lar regeneration, and marked epidermal proliferation. The 
main histopathology of the underlying dermis are edema, 
marked capillary dilation, and infiltration of inflammatory 
cells (Martins et al. 2021; Fleming et al. 2015; Zhao et al. 
2010). Upon infection of ORFV, a number of neutrophils, 
T cells, B cells, and DCs are accumulating in the lesion fol-
lowing primary infection and reinfection.  CD4+ T cells are 
the predominant T cells in the skin in both primary and rein-
fection, playing crucial roles in eliminating ORFV (Bukar 
et al. 2021).

Immunofluorescence assay

Immunofluorescence assay (IFA) is a technique to detect 
unknown antigens using fluorescence-labeled antibodies 
based on the principle of specific binding of antigens to 
antibodies. IFA has the characteristics of simple operation, 
fast speed, strong specificity, high sensitivity, and intuitive-
ness (Petrovan et al. 2019). Zhao and colleagues performed 
an indirect IFA on CPE-positive MDBK cells using rabbit 
anti-ORFV polyclonal antibody as the primary antibody 
and FITC-conjugated goat anti-rabbit IgG as the second-
ary antibody (Zhao et al. 2010). As a result, ORFV-infected 
MDBK cells appear green while the uninfected cells are 
not. In another experiment (Zhao et al. 2011), an indirect 
IFA employing the same FITC-conjugated secondary anti-
body is conducted to detect the expression of ORFV011 and 
ORFV059, two major immunodominant proteins of ORFV.

Lateral flow immunochromatographic assay

Zhao and colleagues establish a lateral flow immunochroma-
tographic assay (LFIA) depending on monoclonal antibodies 
(MAbs) 5A5 and 6F2 against ORFV011 protein (Zhao et al. 
2016). The MAb 5A5 is conjugated with colloidal gold, and 
the MAb 6F2 and goat anti-mouse IgG are sprayed onto 

a nitrocellulose membrane at positions designated test (T) 
and control (C), respectively. When ORFV complexed with 
colloidal gold-conjugated MAb 5A5, captured by MAb 6F2 
at T line, a purple band would appear. Otherwise, the C 
line conjugated with goat anti-mouse IgG would be visible 
when samples contain no ORFV or a small amount below 
the limit of detection. The detection sensitivity of this test is 
2.03 ×  103.0 TCID50/ml. Although this method needs to be 
improved in sensitivity and specificity, the LFIA has a good 
performance in the rapid diagnosis of ORFV in the field, 
no need for well-trained technicians and expensive device.

Enzyme‑linked immunosorbent assay

The enzyme-linked immunosorbent assay (ELISA) is a 
simple, rapid, and quantitative immunoassay to detect anti-
gens or antibodies attached to a solid surface. In general, 
the ELISA method can be classified into direct, indirect, 
sandwich, and competitive types (Wong et al. 2020). Indirect 
ELISA is the most widely used diagnostic method to detect 
antibodies specific for ORFV in goats and sheep. Initially, 
heat-inactivated whole virus is used as the ELISA antigen 
for Capripoxvirus or ORFV diagnosis (Babiuk et al. 2009; 
Bora et al. 2016). However, it is not an ideal assay since it is 
expensive and difficult to produce large quantities of whole 
virus antigen. Furthermore, the virus may exist in the envi-
ronment for a long time and may also cause operators to be 
infected. For these disadvantages, researchers develop an 
indirect ELISA based on C-terminal truncated recombinant 
F1L protein produced in E.coli for detecting ORFV-specific 
antibodies (Yogisharadhya et al. 2018). The established 
rF1L-ELISA with high specificity (92%) and diagnostic 
sensitivity (> 89%) may be used for serological surveillance 
of ORFV infection in goats and sheep. In another study, an 
indirect ELISA using purified ORFV075 scaffold protein as 
coating antigen is developed for anti-ORFV antibody detec-
tion (Fleming et al. 2017).

Molecular‑based diagnosis

Molecular-based diagnostic methods depend on polymerase 
chain reaction to detect virus-specific DNA or RNA rather 
than viral antibodies or antigens (Zhou et al. 2022). Till now, 
a variety of molecular-based diagnosis including polymer-
ase chain reaction, real-time PCR, loop-mediated isothermal 
amplification-based assay, RPA assay, and RAA assay are 
available for ORFV detection.

Polymerase chain reaction

Polymerase chain reaction (PCR) technology targeting 
specific DNA fragments of ORFV has been widely used 
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for ORFV diagnosis. F1L (ORFV059) gene and B2L 
(ORFV011) gene are the most commonly used targets for 
ORFV diagnosis while other conserved genes of ORFV can 
also be selected as candidates (Sahu et al. 2022; Wang et al. 
2019a, b, c). First, the virus genome is extracted from clini-
cal samples using a viral genome extraction kit. Then, PCR 
amplification is carried out with specific primers for target 
genes. Following that, the purified PCR products are cloned 
into vectors for Sanger sequencing.

In addition to single-gene PCR, several duplex and mul-
tiplex PCR approaches have been established and utilized 
for ORFV detection. For example, Zheng and colleagues 
develop a duplex PCR assay for simultaneously detecting 
Capripoxvirus (CaPV) (goatpox virus and sheeppox virus) 
targeting A29L gene and ORFV targeting ORFV059 gene 
(Zheng et al. 2007), respectively. For both CaPV and ORFV, 
the developed assay has a high specificity and sensitivity 
with a detection limit of 1 plaque forming unit (PFU). Simi-
larly, researchers establish a multiplex PCR (mPCR) assay 
to detect sheeppox virus (SPPV), goatpox virus (GTPV), 
and ORFV (based on ORFV025 gene) (Venkatesan et al. 
2014a). As little as 350 pg of viral genomic DNA or  102 cop-
ies of standard plasmid of individual targets or  103 copies of 
plasmid in a mixture of two or three viruses can be detected 
using this mPCR assay. Recently, He and colleagues develop 
a multiplex PCR assay for simultaneously detecting six 
DNA and RNA viruses including peste des petits ruminants 
virus (PPRV) (He et al. 2017), foot and mouth disease virus 
(FMDV), bluetongue virus (BTV), GTPV, SPPV, and ORFV 
(based on ORFV011 gene) from clinical samples from sheep 
and goats. In this assay, reverse transcription of viral RNA is 
performed in the first step, followed by mPCR execution of 
viral cDNA and DNA in the second step. This mPCR assay 
is highly sensitive with a detection limit of 100 pg of viral 
genomic DNA or RNA in a reaction involving in mixture 
of six viruses.

Real‑time PCR

Since conventional PCR approaches are nonquantitative 
and time-consuming, sometimes resulting in nonspecific 
amplification, Wang and colleagues develop a SYBR Green 
I real-time method based on a 180 bp conserved region of 
B2L gene for ORFV diagnosis (Wang et al. 2017). It can 
detect as low as 20 copies of ORFV genomic DNA, about 
1000 times higher than that of conventional PCRs. The test 
takes approximately 1.5 h and shows no cross-reactions with 
PRV, GTPV, and SPPV. However, a melting curve is necessi-
tated to assess whether the product is the intended target. To 
overcome this problem, scientists develop a TaqMan-based 
real-time PCR assay that relied on amplification of a 70 bp 
fragment from B2L gene for ORFV diagnosis (Gallina et al. 
2006). This assay is highly sensitive and reproductive, able 

to quantify virus solutions ranging from 1 ×  101 to 1 ×  106 
TCID50/ml within 1 h. Moreover, Bora and colleagues 
establish a TaqMan real-time PCR assay by targeting the 
DNA polymerase gene (Bora et al. 2011). It is highly sensi-
tive as the limit of detection of this assay is around 3.5 fg or 
15 copies of ORFV genomic DNA. Similarly, researchers 
establish a TaqMan-based real-time PCR assay that relied 
on amplifying an 87 bp DNA fragment from ORFV024 gene 
(Du et al. 2013). The detection limit of this assay is 5 fg or 
15 copies of ORFV genomic DNA.

For simultaneously detecting Capripoxvirus (CaPV) and 
ORFV, Venkatesan and colleagues develop a TaqMan-based 
real-time duplex PCR (drt-PCR) using two pairs of primers 
and two hybridization probes (Venkatesan et al. 2014b). This 
assay is specific only for targeted viruses other than BPXV, 
CMLV, PPRV, and BTV. As low as 20 copies for each of 
the standard plasmid and 35 fg of viral genomic DNA for 
CaPV and ORFV can be detected, respectively. In recent 
years, Xu et al. develop a multiplex TaqMan qPCR assay 
for simultaneously detecting four types of DNA and RNA 
viruses from clinical samples of goats and sheep (Xu et al. 
2019). In this study, multiple primers and probes are used for 
detection of PPRV, FMDV, GTPV, and ORFV, respectively. 
The detection limits are 91.7, 169, 94.1, and 74.6 copies/μl 
for PPRV, FMDV, GTPV, and ORFV in a reaction involving 
four viruses, respectively. Moreover, a novel high-resolution 
melting (HRM) assay (Gelaye et al. 2017) for simultane-
ously detecting eight poxviruses belonging to Orthopox-
virus (CPXV, CMLV), Capripoxvirus (GTPV, SPPV, and 
LSDV), and Parapoxvirus (PCPV, BPSV, and ORFV) genera 
is established. The assay shows high sensitivity, specific-
ity, and cost-effectivity for pox disease detection in a large 
variety of animals and humans. Compared with conventional 
PCRs, the real-time quantitative PCR assay has many advan-
tages such as excellent sensitivity and specificity, less time 
and labor, and high-throughput ability. TaqMan-based real-
time PCR is required to design and produce specific probes 
which are complicated and expensive while SYBR Green 
I-based real-time PCR is simple, cost-effective, and easy 
to perform in which melting curve is required to verify the 
intended products.

Loop‑mediated isothermal amplification

Loop-mediated isothermal amplification (LAMP), mostly 
depending on strand displacement DNA polymerase and 
specific primer sets, is an affordable, rapid, and accurate 
diagnostic approach that amplifies target genes under iso-
thermal conditions, usually around 60 °C (Malik et al. 2019). 
To date, several LAMP assays have been established for 
ORFV diagnosis. For example, Tsai et al. develop a LAMP 
assay based on six primers targeting several conserved 
regions from the B2L gene (Tsai et al. 2009). The detection 
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limit of this LAMP assay is a single copy of standard plas-
mid, which is tenfold and 100-fold higher than nested PCR 
and PCR, respectively. After PicoGreen and ethidium bro-
mide staining, fluorescent green and orange products can be 
visualized, respectively. Moreover, Li et al. develop a LAMP 
assay for ORFV detection by targeting the DNA polymer-
ase gene (Li et al. 2013). For this LAMP assay, 45 min and 
62 °C are determined to be the optimal time and temperature 
conditions, respectively. The LAMP assay has a similar sen-
sitivity with real-time PCR, showing no cross-reactivity with 
SPPV, GTPV, or vesicular stomatitis virus. Venkatesan and 
colleagues (Venkatesan et al. 2016) also develop a specific 
and sensitive LAMP assay targeting DNA polymerase gene 
in which the optimal reaction conditions are at 65 °C incuba-
tion for 60 min. Furthermore, Wang et al. develop a LAMP 
assay based on the F1L gene with SYBR Green I dye for 
color inspection (Wang et al. 2013). The sensitivity of this 
assay is 10 copies of a standard plasmid, having no cross-
reactions with either FMDV or Capripoxvirus.

LAMP can be carried out in a water bath or heat block 
under isothermal conditions, no requirements for a thermo-
cycler. In contrast to PCR, repetitive denaturing and anneal-
ing process are not required and the inhibitory effects from 
substances in samples are significantly reduced. In conclu-
sion, LAMP is a simple, sensitive, specific, rapid, and visu-
alized field diagnostic approach for ORFV.

RPA assay and RAA assay

Since its initial development in 2006, the recombinase poly-
merase amplification (RPA) as a rapid isothermal molecular 
diagnostic method has been successfully used to detect various 
pathogens (Fan et al. 2020). This assay consists of a recom-
binase, a single-stranded DNA-binding protein (SSB), and a 
strand-displacing polymerase. Yang and colleagues develop a 
fluorescent probe-based RPA assay (ORFV exo RPA assay) 
targeting the DNA polymerase gene (Yang et al. 2015). This 
ORFV exo RPA assay is demonstrated to be highly specific 
with no cross-reactions with PPRV, FMDV, or Capripoxvi-
rus, and the detection limit is 100 genome copies per reaction. 
Besides, Yang et al. develop a novel ORFV RPA-LFD assay 
by combining previously established RPA technology with a 
lateral flow dipstick (LFD) (Yang et al. 2016). This RPA-LFD 
assay is also highly specific and sensitive with a detection 
limit of only 80 copies per reaction. It can be used for ORFV 
diagnosis within 20 min with a wide range of temperature. In 
contrast to LAMP, RPA is simpler to run, requiring only a pair 
of primers, a lower temperature (37 °C to 42 °C), and a shorter 
run time (less than 20 min) while LAMP requires four or six 
primers, a higher temperature (62 °C), and a longer run time.

As a new isothermal amplification technology, recom-
binase-aided amplification (RAA) assay has been widely 

used for various pathogens’ detection. Different from RPA 
assay, RAA assay consists of three core enzymes, recombi-
nase UvsX, DNA polymerase, and SSB (Xue et al. 2020). 
Wang et al. successfully established a RAA assay for ORFV 
detection (Wang et al. 2020). This assay can be accom-
plished within 30 min and the detection limit is 10 copies 
per reaction, showing no cross-reaction other common DNA 
viruses. In conclusion, RAA assay is a rapid, sensitive, and 
specific detection approach for ORFV clinical testing.

Conclusion and perspectives

Currently, a range of diagnostic methods are available for 
ORFV detection. Clinical diagnosis can only be a pre-
liminary diagnostic method for ORFV detection. Virus 
isolation remains to be the gold standard for ORFV detec-
tion despite this method being laborious, time-consuming, 
and less sensitive. Indirect ELISA is the most widely used 
serological diagnostic method due to its simplicity, rela-
tively low cost, and high-throughput potential. Compared 
with these above diagnostic methods, molecular-based 
diagnoses including PCR, real-time PCR, and LAMP 
show higher sensitivity and specificity. The multiplex 
PCR or TaqMan-based real-time PCR makes it possible 
to simultaneously detect various pathogens, assisting to 
control the disease in time. Isothermal molecular diagnos-
tic approaches including LAMP, RPA, and RAA assay are 
rapid, sensitive, and specific, suitable for ORFV clinical 
testing in field. It is expected that additional diagnostic 
methods such as duplex fluorescent microsphere immu-
noassay (FMIA) and droplet digital PCR (ddPCR) will be 
established in the near future for rapid diagnosis of ORFV 
(Ji et al. 2020; Kojabad et al. 2021). Additionally, com-
mercial kits for ORFV and various pathogen diagnoses 
are quite needed.
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